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Change the horse to golden.

Change to Cartoon.

Remove the bee over the flowers. Change sky to sunset.

Change the cat to tiger.

Add flowers to woman’s hair.

Segmentation-to-Image

Edge-to-Image

Depth-to-Image

Figure 1. We propose EditAR, a unified conditional autoregressive model for diverse conditional generation tasks. We demonstrate that
without task-specific designs, a single autoregressive model achieves strong performance across diverse tasks, including texture manipula-
tion, object replacement, object removal, local editing, canny-to-image, depth-to-image, and segmentation-to-image.

Abstract

Recent progress in controllable image generation and edit-
ing is largely driven by diffusion-based methods. Although
diffusion models perform exceptionally well in specific tasks
with tailored designs, establishing a unified model is still
challenging. In contrast, autoregressive models inherently
feature a unified tokenized representation, which simpli-
fies the creation of a single foundational model for various
tasks. In this work, we propose EditAR, a single unified au-
toregressive framework for a variety of conditional image
generation tasks, e.g., image editing, depth-to-image, edge-
to-image, segmentation-to-image. The model takes both
images and instructions as inputs, and predicts the edited
images tokens in a vanilla next-token paradigm. To en-

hance the text-to-image alignment, we further propose to
distill the knowledge from foundation models into the au-
toregressive modeling process. We evaluate its effectiveness
across diverse tasks on established benchmarks, showing
competitive performance to various state-of-the-art task-
specific methods. Project page: https://jitengmu.
github.io/EditAR/

1. Introduction
Recent advances in conditional image generation are pre-
dominantly driven by high capacity text-to-image diffusion
models [24, 25, 41, 48, 52, 55, 57, 58]. These models serve
as a strong image prior, that can be specialized to individ-
ual tasks, facilitating remarkable progress in applications
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like inpainting [35, 69, 70], personalization [18, 29, 56],
image editing [4, 22, 28, 38, 40], and image translation
[30, 74]. While these approaches excel at each individual
task, the resulting variations in architectural designs and
learning objectives make it challenging to integrate multi-
ple tasks within a single framework. Ideally, a single condi-
tional model would excel across all tasks, simplifying both
implementation and deployment.

Large-scale autoregressive models have recently gained
attention as a promising path towards this goal [61, 63, 71,
72]. Unlike diffusion models, they naturally provide a uni-
fied, token-based, framework to blend diverse inputs. This
unified representation offers substantial promise for creat-
ing a single model capable of performing a wide range
of image synthesis and manipulation tasks within a uni-
fied architecture. While recent works [61, 63] demon-
strate remarkable text-to-image generation performance, it
is still unclear whether such models are well-suited as foun-
dational architectures for broader conditional generation
tasks. While a few autoregressive variants [10] have demon-
strated the possibility of image inpainting by modifying the
next-token prediction paradigm, the efficacy of next-token
prediction has not yet been demonstrated for image editing.

In this work, we investigate the feasibility of building a
single autoregressive model that unifies various conditional
image generation tasks. We introduce EditAR, a novel au-
toregressive model that, for the first time, integrates vari-
ous image manipulation and image translation tasks. Like
prior text-to-image autoregressive models [10, 61, 63], it
consists of two stages: a VQVAE [54, 67], that maps im-
age patches into tokens indices, and an autoregressive trans-
former [15] that models the categorical distribution of out-
put tokens given both texts and images as inputs. As illus-
trated in Figure 1, we show that that this achieves promising
performance across a significant variety of tasks.

EditAR builds primarily on Llamagen [61], a text-to-
image autoregressive model based on the Llama2 [64, 65]
architecture that has demonstrated impressive image gener-
ation capabilities. However, due to the lack of a conditional
image input, Llamagen does not support tasks like image
manipulation or translation. To allow this, we adapt the ar-
chitecture by prefilling the model with image tokens from a
conditioning input image, along with additional positional
embeddings. This is complemented by an auxiliary distil-
lation loss, based on DINOv2 [9, 44], which reinforces the
visual coherence of the images synthesized by the autore-
gressive model. Empirical results show that injecting this
visual prior enhances alignment between the generated im-
ages and the input text.

At inference, given an image and corresponding editing
instructions, output tokens are generated by the standard
next-token prediction paradigm. To enhance image qual-
ity and text-image alignment, classifier-free guidance [23]

is applied to both image and texts. To our knowledge, this
paper provides the first evidence for the feasibility of using
next-token prediction autoregressive models for conditional
generation on large benchmarks. Furthermore, by solving
diverse conditional image generation tasks, it paves the way
for a new class of approaches to unified conditional genera-
tion. Our contributions are as follows:

• We introduce a new autoregressive framework EditAR,
that is jointly trained on various image manipulation and
image translation tasks, and demonstrates promising po-
tential towards building a unified conditional image gen-
eration model.

• A distillation loss is introduced to enhance the semantics
in the learning of autoregressive models.

• Experiments show that the proposed method demon-
strates strong performance on a variety of tasks, includ-
ing texture manipulation, object replacement, object re-
moval, local editing, canny-to-image, depth-to-image,
and segmentation-to-image.

2. Related Work

2.1. Controllable Image Diffusion
Text-to-image diffusion models [2, 11, 14, 16, 23–25, 34,
41, 48, 49, 53, 55, 57–60] have revolutionized image gener-
ation, significantly improving the realism of the generated
visuals. Nevertheless, adapting these models for tasks like
image editing poses notable challenges, as synthesized im-
ages can include artifacts, fail to follow the editing instruc-
tion, or fail to remain faithful to the conditioning image.

One popular approach [22, 28, 36–38, 47, 68] is to frame
editing as a two stage process: the conditioning image is
first inverted into noise, which is then run through the for-
ward diffusion chain conditioned by the editing instruc-
tions. For example, SDEdit [36] adds noise to the im-
age, which is then progressively denoised via a stochas-
tic differential equation (SDE). This, however, can strug-
gle to reconstruct the image details that are supposed to re-
main unaltered. More advanced techniques improve both
the inversion and content-preserving generation quality.
To improve the reconstruction quality, optimization-based
inversion methods [28, 37, 38, 68] are proposed to in-
vert the conditioning image into a latent embedding that
achieves almost perfect reconstruction. This is then cou-
pled with content-preserving generation techniques, usually
based on the preservation of cross-attention maps with text
prompts [8, 22, 47]. While producing higher-quality visu-
als, these methods require additional computation and time
for the optimization of the latent embeddings.

A faster alternative is to take a strictly feedforward ap-
proach [4, 40, 73], directly incorporating both conditioning
image and texts in the denoising process of the diffusion
model. For example, InstructPix2Pix [4] generates large-
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scale paired data of conditioning, edited image, and editing
instructions, using GPT-3 [5] and Prompt-to-Prompt [22].
These data are used to train a text-to-image diffusion model
in a supervised way, demonstrating strong capabilities for
texture transfer and object replacement. However, this type
of approach is not suitable for translation tasks involving
sparse conditioning signals, such as canny or edge maps.
Better performance for these tasks can be achieved by ap-
proaches [31, 39, 50, 74, 75] that, like ControlNet, intro-
duce additional trainable parameters to create a transla-
tion model. However, these parameters usually need to be
trained for each type of conditioning modality, and multiple
models are needed to support multiple modalities. UniCon-
trolNet [75] and UniControl [50] advanced this by unify-
ing various sparse conditions in a single model and shows
promising potentials. Differently, our method jointly solve
both the image editing and translation task, significantly
simplifying the design and deployment of real-world appli-
cations.

2.2. Autoregressive Models

Autoregressive models are a class of generative models that
treat text-to-image generation as a sequence-to-sequence
modeling problem, similar to machine translation. Early
works like VQVAE [67], pioneered the idea of using vec-
tor quantization for this purpose, allowing an image to
be encoded as a sequence of discrete tokens, as is com-
mon for language. This enables the model to process
visual data similarly to language tokens, and paved the
way for a series of transformer-based autoregressive mod-
els [10, 15, 52, 61, 62, 72]. Recently, with the rise of large
language models (LLMs) [1, 6, 12, 13, 20, 32, 33, 42, 43,
45, 64, 65], LLM-style autoregressive models have started
to gain popularity for text-to-image generation. Approaches
like Parti [52, 62, 72] leverage large scale data and model
sizes to successfully synthesize high quality, visually di-
verse images. Yet, most of these approaches remain focused
on text-to-image generation, with limited efforts in adapting
these models for conditional generation tasks.

Other works [10, 63, 76] improve autoregressive mod-
els by reconsidering the next-token prediction paradigm.
They challenge the line-by-line raster-scan generation of
image tokens, arguing that images require more global con-
texts than text. Inspired by Masked autoencoders [21],
MaskGIT [10] uses an iterative masked modeling approach.
It learns to predict randomly masked tokens by attending
to tokens and iteratively decodes tokens during inference.
VAR [63] changes the next-token prediction paradigm into
a coarse-to-fine next-scale prediction, significantly improv-
ing the visual quality of the generated images.

The model proposed in this work builds on Llama-
Gen [61], which generalizes the Llama2 [64, 65] architec-
ture and is currently the state-of-the-art open-source autore-

gressive model for text-to-image generation. The proposed
model retains its next-token prediction paradigm, leverag-
ing LlamaGen as a strong prior for text-to-image genera-
tion, and further augments it, by incorporating both images
and texts as inputs and extending its capabilities to a much
wider range of conditional generation tasks.

2.3. Combining LLM with Diffusion Models
In image editing, there has been a recent trend to combine
LLMs with diffusion models [3, 17, 26, 76], thus addressing
the limitations of CLIP-type text encoders widely used in
text-to-image diffusion. These works have argued [17, 26]
that replacing the CLIP [51] text encoder with LLM mod-
ules [32, 33] enhances the reasoning capabilities of the dif-
fusion model, enabling more nuanced interpretation of the
editing instructions. However, the combination of the two
models is memory, computation, and time intensive. Our
aim is to design a pure autoregressive model that directly
outputs the edited image as a sequence of tokens, rather
than outputs in LLM text output space, thus removing the
need for diffusion models. This has much lower complex-
ity and avoids the challenges of jointly optimizing models
that are trained in fundamentally different ways (autoregres-
sive for text, denoising for images). Combined models have
also only been shown successful for editing, while the pro-
posed model also supports translation tasks involving differ-
ent types of conditioning signals, e.g. the sparse signals of
edge-to-image translation. This makes the proposed archi-
tecture a unified solution to a much broader range of tasks.

3. Method
This work aims to create an autoregressive model that uni-
fies the solution for various conditional image synthesis
tasks, including different types of image editing, and image
translation tasks such as edge-to-image, or segmentation-
to-image. For this, we leverage existing large-scale text-to-
image autoregressive models [61], which we generalize to
integrate both image and text elements as conditions. Addi-
tionally, a training strategy is proposed to effectively unify
various conditions, enabling high-quality image generation.
In what follows, we first briefly review the paradigm of text-
to-image autoregressive models in Section 3.1, which forms
the basis of our approach. We then describe modifications,
in Section 3.2, to incorporate image conditioning beyond
texts. Finally, we present effective learning and inference
strategies for the proposed model in Section 3.3.

3.1. Background
Autoregressive models [15] approach text-to-image gener-
ation as a sequence-to-sequence modeling task. A com-
mon approach includes two main components: a VQ-
Autoencoder [54, 67] that converts images into discrete to-
kens, and an autoregressive transformer [15] that models the
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Figure 2. Overview of EditAR, which can take various types of image conditions to perform image editing or translation. An image
Ic is mapped through a VQ-Encoder EI to obtain corresponding token indices. Corresponding text instructions are mapped to latent
embeddings cT via a text encoder ET . Both image token indices and text embeddings are input to the autoregressive transformer F to
predict the target token indices s. To enhance the text-to-image alignment, a distillation loss is introduced during training to minimize the
differences between the latent features of the autoregressive model, F and that of a feature encoder Edistill. The output sequence s is lastly
decoded into a realistic image via a VQ-Decoder DI during inference.

categorical distribution of these tokens.
A VQ-Autoencoder uses an encoder EI to map an im-

age I ∈ RH×W×3 into a latent feature map z ∈ Rh×w×nz

of feature dimensionality nz . A vector quantizer is then
used to map each feature vector zi,j ∈ Rnz into its nearest
neighbor zqi,j in a feature vector codebook. This allows the
representation of the image as a sequence of discrete code-
book indices, s = {s1, s2, · · · , sh·w}. A decoder DI can
finally be used to map these indices into the corresponding
codebook entries, to recover the image.

One of the advantages of this quantization operation is
that the index sequence s is not fundamentally different
from the sequences of one-hot codes commonly used to
represent sentences in natural language. This allows a nat-
ural unified treatment of the two modalities. While large
language models are autoregressive models that map a text
token sequence into another text token sequence, a text-to-
image generation autoregressive model outputs a sequence
of visual tokens. Hence, the task of a text-to-image gener-
ation autoregressive model F reduces to modeling the dis-
tribution of the next index p(si|s<i, cT ), where cT denotes
the text embeddings obtained from a text encoder DT . The
likelihood of the full sequence is thus defined as,

p(s) =

n∏
i=1

p(si|s<i, cT ), (1)

and the model parameters can be learned by maximizing the
log-likelihood of the token data, Es∼p(s)[− log p(s)].

3.2. EditAR
The proposed architecture for conditional image synthesis
builds on LlamaGen [61], which is generalized to incorpo-
rate various types of image conditioning and a distillation
loss for alignment with existing foundation models. The
overall architecture is illustrated in Figure 2 and has the key
design choices outlined below.

Image Condition. The conditioning image Ic is mapped
to a sequence of indices, cIc

= {c1, c2, · · · , ch·w}, via an
image encoder EI . The same encoder EI is also used to map
the target image Is into index sequence s. The likelihood
of the output sequence s becomes

p(s) =

n∏
i=1

p(si|s<i, cT , cIc
). (2)

This is implemented with the extension of a text-to-image
autoregressive model, as shown in Figure 2. Both the ad-
ditional image indices cIc

and the text embeddings cT are
fed into the autoregressive model F . During training, they
are complemented by the indices s that appear at both in-
put s<i and output si of the model to implement the au-
toregressive operation. Note that different sets of positional
embeddings are applied to the embeddings of cIc

and s to
differentiate the control image sequence from the output se-
quence. In addition, an unconditional image embedding is
introduced and used during training to preserve the model’s
text-to-image and unconditional generation ability.

Incorporating Image Modalities. Our method supports
various imaging modalities, including canny edges, depth
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maps, segmentation masks, and natural images. The gen-
eration process is adjusted to these different modalities by
modifying the phrasing of text inputs. For instance, to
generate an image from a depth map, we use the “Given
the depth, generate the image following the instruction:
<INSTRUCTION>”, where the instruction is usually the
description of the content of the generated image. This ap-
proach is similarly applied for canny edge maps and seg-
mentation masks. When the input is a real image, we use
only “<INSTRUCTION>” to specify how to modify the in-
put image.

Distillation. Distillation from vision foundation models
has been demonstrated to be effective across a variety of
computer vision tasks. An autoregressive model gradually
learns to synthesize tokens of high likelihood given the con-
ditioning token stream. However, the autoregressive model,
trained solely to predict token indices, are not guaranteed
to learn general semantic features. To inject general vi-
sual knowledge in the feature space, we introduce a distilla-
tion loss from the vision foundation model feature encoder
Edistill, which in our implementation is DINOv2 [9, 44]. An
alignment network A, composed of a single convolutional
layer, is used to match the dimensionality of the embed-
ding space of the autoregressive model F(·) with that of the
foundation model. During training, the parameters of this
network are learned to minimize the distillation loss

Ldistill = MSE
(
A(F(·)), Edistill(·)

)
. (3)

For both F and Edistill, the features extracted from the last
hidden layer are used to compute this loss. Empirically, we
find this design to improve the text-to-image alignment.

3.3. Training and Inference
During training, both the text-encoder ET and foundation
model Edistill are frozen. The parameters of the autoregres-
sive transformer F are initialized from pre-trained text-to-
image models. All parameters of F and A are optimized
for the adaptation, using

L = LCE + λdistill · Ldistill, (4)

where LCE = Ex∼p(x)[− log p(s)] is the cross-entropy loss
commonly used to train next-token prediction models.

Motivated by prior works [4, 61], we apply dropout dur-
ing training to preserve the model’s unconditional genera-
tion ability, and classifier-free guidance during inference.
For this, we set cT = ∅ in 5% of the training examples,
cIc = ∅ in another 5%, and both cT = ∅ and cIc = ∅ in
a final 5%. At inference, only cIc

and cT are given as in-
puts, and the set s is predicted sequentially. Classifier-free
guidance consist of using

logp(si|s<i, cT , cI) = log p(si|s<i, cI)

+ η ·
(
log p(si|s<i, cT , cI)− log p(si|s<i, cI)

)
,

(5)

where η is a guidance strength hyperparameter, to compute
index log-probabilities at inference.

4. Experiments
In this section, we discuss an extensive experimental eval-
uation of EditAR on various conditional image synthesis
tasks. Note that EditAR is a single model that solves both
image editing, as discussed in Section 4.2, and image trans-
lation, as discussed in Section 4.3, while all baseline models
we compare to are specialized models for a subset of tasks.
Surprisingly, despite this disadvantage, EditAR still shows
strong performance.

4.1. Dataset and Training Details
Dataset. EditAR is trained in a fully supervised manner us-
ing paired data. Recent works [4, 19, 27] have shown that
it is possible to create large-scale image editing data with
automated pipelines. We use 1.5M examples from SEED-
Data-Edit-Unsplash [19], created with ChatGPT [42] and
Plug-and-play [66], for a range of image editing tasks, in-
cluding modifying styles, objects, colors, and materials.
To further support editing operations like object addition
and removal, we add the PIPE dataset [69] with 1.8M ex-
amples, where image pairs for the task of adding objects
are created by inpainting. During training, we randomly
flip each pair with a 50% probability and adjust the edit-
ing instruction from “Add” to “Remove” correspondingly.
For image translation tasks, we follow ControlNet++ [30]
and use COCOStuff [7] for segmentation mask-to-image
translation and MultiGen-20M for canny edge and depth-
to-image tasks.

Evaluation and Metrics. To systematically evaluate
EditAR, we use multiple benchmark datasets. For image
editing, we use the PIE-Bench dataset [28] with 700 ex-
amples, covering 10 editing types. Our method uses the
source image and editing instructions to predict the target
edit. Both reconstruction and text-to-image alignment are
evaluated as in [28] with the annotated foreground masks.
For the evaluation of image translation, we follow Con-
trolNet++ [30] and use the corresponding validation splits
for COCOStuff [7] and MultiGen-20M [50], which contain
5, 000 examples per task. Regarding metrics, we follow the
common practice in the field: mIOU is used for semantic
segmentation conditions, RMSE for depth map conditions,
and SSIM for canny edge conditions. For canny edge con-
dition, (100, 200) are used as thresholds.

Training and Inference. The training hyperparameters
follow the setting of [61]. All images are resized to a res-
olution of 512 × 512 for both training and inference. The
VQ-Autoencoder has a downsampling ratio of 16, so that
each image is represented by 1024 tokens. The model is
optimized using AdamW with a constant learning rate of
10−4, β1 = 0.9, β2 = 0.95, and weight decay of 0.05.
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Change the 
room 

to a garden.

Input Ours

Change the 
color of the tea 
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InstructPix2Pix MGIE Prompt-to-Prompt PnPInversion

Make the cat 
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Remove the 
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Camera a
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Figure 3. Comparison of EditAR (Ours) to feed-forward methods (InstructPix2Pix [4], MGIE [17]) and inversion-based approaches
(Prompt-to-Prompt [22], PnPInversion [28]) on various edits. Our method preserves input details well and has strong text-to-image
alignment. In contrast, baseline results exhibit unrealistic visuals, including exaggerated edits or not following instructions, unrealistic
modifications, or are unable to localize objects accurately.

The model is trained with a batch size of 64 for 40, 000 it-
erations. In all experiments, we use λdistill = 0.5 in (4).
For the guidance strength of (5), we empirically find that
η = 3.0 yields a good balance between reconstruction qual-
ity and text-to-image alignment. More details and results
are presented in the supplementary materials.

4.2. Image Editing
For image editing, we compare EditAR to various baselines,
as shown in Table 1 and Figure 3. Specifically, we consider
two types of diffusion baselines: feed-forward instruction-
based methods and inversion-based content-preserving edit-
ing methods.

EditAR achieves the best overall performance among
feed-forward instruction-based baselines, e.g., Instruct-
Pix2Pix [4] and MGIE [17]. All methods share the same
inputs: an input image and an instruction prompt. Instruct-

Pix2Pix excels particularly in texture transfer and object re-
placement tasks. MGIE leverages both multimodal large
language models (MLLMs) to generate expressive instruc-
tions, which provides explicit guidance to enhance the edit-
ing process. However, as shown in Table 1 and Figure 3,
while these methods achieve great text-to-image alignment,
they often struggle to preserve the background or produce
exaggerated image edits. In comparison, EditAR maintains
a good balance between reconstruction and editing quality,
resulting in highly photorealistic images.

Unlike feed-forward methods, inversion-based ap-
proaches first invert an image into a latent space, usu-
ally latent noise or embeddings, before performing content-
preserving sampling to generate the edited target. Instead
of directly taking an editing instruction, these methods ad-
ditionally require a source prompt, which is crucial for the
inversion process. As shown in Table 1, though Prompt-
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Structure Background Preservation CLIP SimilarityMethod T2I
Model Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edited ↑

Prompt-to-Prompt SD1.4 69.43 17.87 208.80 219.88 71.14 25.01 22.44
Null-text Inversion SD1.4 13.44 27.03 60.67 35.86 84.11 24.75 21.86

PnPInversion SD1.4 11.65 27.22 54.55 32.86 84.76 25.02 22.10
Pix2pix-zero SD1.4 61.68 20.44 172.22 144.12 74.67 22.80 20.54

MasaCtrl SD1.4 28.38 22.17 106.62 86.97 79.67 23.96 21.16
InstructPix2Pix SD1.5 107.43 16.69 271.33 392.22 68.39 23.49 22.20

MGIE SD1.5 67.41 21.20 142.25 295.11 77.52 24.28 21.79
EditAR (Ours) LlamaGen 39.43 21.32 117.15 130.27 75.13 24.87 21.87

Table 1. Comparison of EditAR to various feed-forward methods (bottom) and inversion-based approaches (top) on the PIE-Bench
dataset [28]. Our method achieves the highest overall performance among all feed-forward approaches and narrows the gap with ad-
vanced inversion-based methods. While InstructPix2Pix [4] achieves a high edited CLIP score, it struggles to reconstruct unedited regions
accurately, as indicated by its lower whole CLIP score and background scores. MGIE [17] shows improved background preservation and
editing quality, yet our method demonstrates stronger overall performance.

Depth Map (MultiGen) Canny Edge (MultiGen) Seg. Mask (COCOStuff)Method T2I
Model RMSE ↓ FID ↓ SSIM ↑ FID ↓ mIOU ↑ FID ↓

T2I-Adapter SD1.5 48.40 22.52 38.93 15.96 - -
UniControlNet SD1.5 40.65 22.27 41.55 17.14 - -

UniControl SD1.5 39.18 18.66 51.71 19.94 - -
ControlNet SD1.5 35.90 17.76 54.87 14.73 27.46 21.33

ControlNet++ SD1.5 28.32 16.66 57.06 18.23 34.56 19.29
EditAR (Ours) LlamaGen 34.93 15.97 48.11 13.91 22.62 16.13

Table 2. Comparison of EditAR to various conditional image synthesis baselines. Our method yields the best FID scores, underscoring its
strength in both sample quality and diversity. Note that T2I-Adaptor [39], ControlNet [74], and ControlNet++ [30] train separate models
for different conditions. While UniControlNet [75] and UniControl [50] show promise as unified models capable of handling multiple
tasks, they underperform EditAR. All the results are compared on 512× 512 image resolution with Clean-FID implementation [46].

to-Prompt yields the strong editing clip scores, they fail to
preserve the background (see also Figure 3). With further
optimization, approaches like Null-text Inversion [38] and
PnpInversion [28] show improved reconstruction fidelity.
However, they remain limited by the absence of a unified,
content-preserving model that performs consistently well
across diverse tasks.

4.3. Image Translation
We validate the effectiveness of the proposed method on
three image translation tasks: segmentation-to-image, edge-
to-image, and depth-to-image. As shown in Table 2 and
Figure 4, EditAR outperforms other methods in FID across
all tasks, demonstrating its ability to synthesize images that
are both high-quality and diverse.

Compared with unified-model approaches (UniCon-
trol [50] and UniControlNet [75]), our method demonstrates
superior scores. As evidenced by both approaches, unify-
ing various conditional synthesis tasks alone is challeng-
ing. Specifically, UniControl employs a task-aware hyper-
network to modulate the zero-convolution modules of Con-

trolNet. UniControlNet fine-tunes two additional adapters
on frozen pre-trained text-to-image diffusion models, en-
abling various control inputs. Despite these advances, Edi-
tAR still delivers better overall performance.

Single-modality approaches take advantage of task-
specific fine-tuning to achieve optimal performance on each
domain. For example, in the segmentation-to-image task,
single-model approaches often generate pre-defined classes,
as they are trained solely to generate these specific cate-
gories. While EditAR consistently produces visually ap-
pealing results, the semantics may not always align per-
fectly with the ground-truth. Though learning a more chal-
lenging task, our model still synthesizes diverse images
with good visual quality.

4.4. Ablation
In this section, we study the effectiveness of the distilla-
tion loss, and show results distilled from different founda-
tion models. Furthermore, we also explore the effects of
different classifier-free-guidance, and show that it is crucial
for high synthesis quality.
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Ground-truth Ours UniControl ControlNet ControlNet++Condition

Figure 4. Visual comparisons to baseline methods on various image translation tasks. Our method, EditAR, produces photo-realistic
results, preserves input details, and offers substantial sample diversity.

Input No Distill

Change color of 
rose from 

red to blue.

Make the 
young girl a

black and white
sketch.

DINOv2-1.0 DINOv2-0.5 DINOv2-0.1 CLIP

Change color of rose from red to blue.

Make the young girl a black and white sketch.

Input No Distill DINOv2-1.0 DINOv2-0.5 CLIP

Figure 5. Studies on distillation loss. From left to right, we show
the input image, results w/out distillation, and distillation results
with DINOv2 and CLIP. The top example shows improved object
localization. The bottom shows better text-to-image alignment.

Make the material of the mushroom glowing.

Input 𝜂=1.0 𝜂=3.0 𝜂=7.5

Figure 6. Ablation of classifier-free guidance values.

Distillation. We hypothesize that an autoregressive
model trained solely to predict token indices is not guar-
anteed to align with semantic features. Therefore, we pro-
pose a distillation loss to encourage stronger feature space
similarity between the autoregressive model and foundation
models. As shown in Figure 5, experimental results show

that adding the distillation loss improves the overall text-
to-image alignment, e.g., better localizing the target edit-
ing object. We try different foundation models and em-
pirically find that DINOv2-0.5, with distillation coefficient
λdistill = 0.5, achieves the best overall performance.

CFG Guidance. We experiment with various guidance
coefficients, as shown in Figure 6. Our results indicate that
an optimal classifier-guidance strength is crucial for achiev-
ing high visual quality. With a lower classifier-free guid-
ance value, the model shows weak responses to the text
input. While a higher value improves text-to-image align-
ment, the reconstruction quality is reduced. In practice, we
find that a value of η = 3 yields the best trade-off between
text-to-image alignment and reconstruction quality.

5. Conclusion

We introduce EditAR, a unified autoregressive framework
designed for a wide range of conditional image genera-
tion tasks. EditAR adapts to various image inputs, switch-
ing modes solely through text prompts. We assess its
effectiveness across diverse image editing and translation
tasks, demonstrating its strong performance of reconstruc-
tion quality and edited visual quality. As text-to-image au-
toregressive models continue to advance, we hope this work
paves the way for new possibilities in unified conditional
generative modeling.
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In this supplementary materials, we provide more details
of the submission. We show additional editing results and
more baselines in Section A complementing Section 4.2 in
the paper; Furthermore, more image translation and com-
parisons are presented in Section B; More results of im-
age translation with distillation are discussed in Section C.
More implementation details and training recipes (paper
Section 4.1) are discussed in Section D. The models and
codes will be released.

A. Additional Image Editing Comparison
In Table 1, Figure 3 and Section 4.2 in the main text, we
have shown our editing results as well as comparisons to
various baselines. Here we provide more details and show
additional comparisons to more baselines, as shown in Ta-
ble 3. More visual comparisons are presented in Figure 7,
8, 9, 10, 11. For all methods, we use their officially re-
leased model checkpoints to ensure quality. Note that in
the paper where we referenced PnP Inversion, the method
is also referred to as Direct Inversion. For consistency, we
use PnP Inversion in the paper. We elaborate on the detailed
implementations of each baseline below.

InstructPix2Pix. Instructional image editing poses
greater challenges compared to text-to-image generation,
as it usually requires the ability to process images follow-
ing instructions while maintaining visual realism and re-
construction quality. InstructPix2Pix pioneered instruction-
based image editing by creating a large-scale dataset com-
prising conditioning images, edited outputs, and corre-
sponding editing instructions, then training a text-to-image
diffusion model in a fully supervised manner. This method
excels in tasks such as global texture transfer and object
replacement. However, while InstructPix2Pix achieves a
high edited CLIP score, it struggles to accurately recon-
struct unedited regions, as observed by its lower whole
CLIP score and background preservation scores. As visu-
alized in Figure 7, 8, 9, 10, 11, results often reveal exag-
gerated edits and unrealistic modifications. To further eval-
uate if the differences are introduced by data alone, we fine-
tuned InstructPix2Pix on the same datasets (SEED-Data-
Edit-Unsplash and PIPE Dataset) as our proposed method.
Results show that the model only achieves an editing CLIP
score of 19.97, with most examples failing to follow the
given instructions. This shows the method is highly sensi-
tive to input data, making it challenging to balance multiple
datasets effectively.

MagicBrush. To enhance the editing quality of In-
structPix2Pix, MagicBrush introduces a manually anno-
tated dataset of 10K real image pairs (source image, in-
struction, target image) across diverse editing scenarios. As
shown in Table 3, fine-tuning InstructPix2Pix on the Mag-
icBrush dataset enhances reconstruction performance but
leads to a significant decline in edited CLIP scores, high-

lighting the sensitivity of balancing data. Moreover, man-
ual dataset annotation is time-consuming and challenging to
scale efficiently.

InstructDiffusion. InstructDiffusion aims to develop a
unified model capable of addressing a wide range of vision
tasks without requiring task-specific modifications. To en-
able this, it extends InstructPix2Pix by training on diverse
tasks, including understanding tasks (e.g., segmentation and
keypoint detection) and generative tasks (e.g., editing and
enhancement). The approach consists of two stages: train-
ing a unified model across various tasks, followed by fine-
tuning for specific tasks, similar to InstructPix2Pix. Specifi-
cally, for image editing, the paper introduces a new dataset,
Image Editing in the Wild (IEIW), created by combining
multiple existing datasets. However, as shown in Figure 7,
8, 9, 10, 11, it often produces exaggerated editing results.

MGIE. MLLM-Guided Image Editing (MGIE) high-
lights that the reliance on CLIP text encoders in Stable Dif-
fusion limits the ability to follow precise instructions for
achieving specific editing goals. To address this, MGIE re-
places the CLIP text encoder with outputs from multimodal
large language models (MLLMs), enabling the understand-
ing of more expressive and detailed instructions. In contrast
to MGIE, our method does not rely on a diffusion model,
resulting in significantly lower complexity and avoiding the
challenges of jointly optimizing models. As shown in Ta-
ble 3, despite its simplicity, our approach delivers signifi-
cantly better reconstruction and editing quality.

SEED-X-Edit. SEED-X is a unified and versatile model
that can handle both comprehension and generation tasks,
showcasing strong performance in real-world applications
across various domains, e.g., instructed image editing.
SEED-X-Edit refers to the model derived by fine-tuning
SEED-X specifically for image editing on the SEED-Data-
Edit dataset, a new dataset containing both manual anno-
tated data and automatically generated image pairs. As
shown in Table 1 and Figures 7, 8, 9, 10, 11, the method
struggles with reconstructing unedited regions and often
produces unrealistic images with high contrast. In com-
parison, our proposed method achieves better overall per-
formance, despite being trained without manual-annotated
data and with a simpler design.

Inversion-based Methods. Unlike feed-forward meth-
ods, inversion-based approaches first invert an image into
a latent space, typically using latent noise or embeddings,
before performing content-preserving sampling to generate
the edited target. These methods require not only an edit-
ing instruction but also a source prompt, which is crucial
for the inversion process. For example, Prompt-to-Prompt
uses DDIM inversion and manipulates attention maps to
preserve content across various edits. Similarly, Pix2Pix-
Zero retains the cross-attention maps of the input image
throughout the diffusion process for improved reconstruc-
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Structure Background Preservation CLIP SimilarityMethod T2I
Model Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edited ↑

Prompt-to-Prompt SD1.4 69.43 17.87 208.80 219.88 71.14 25.01 22.44
Null-text Inversion SD1.4 13.44 27.03 60.67 35.86 84.11 24.75 21.86

PnP Inversion SD1.4 11.65 27.22 54.55 32.86 84.76 25.02 22.10
Pix2Pix-Zero SD1.4 61.68 20.44 172.22 144.12 74.67 22.80 20.54

MasaCtrl SD1.4 28.38 22.17 106.62 86.97 79.67 23.96 21.16
InstructPix2Pix SD1.5 107.43 16.69 271.33 392.22 68.39 23.49 22.20

MagicBrush SD1.5 26.81 26.85 66.67 171.11 83.37 23.89 20.84
InstructDiffusion SD1.5 74.21 20.88 142.35 353.45 76.70 24.06 21.57

MGIE SD1.5 67.41 21.20 142.25 295.11 77.52 24.28 21.79
SEED-X-Edit SD-XL 61.69 18.80 173.63 209.05 74.93 25.51 22.20
EditAR (Ours) LlamaGen 39.43 21.32 117.15 130.27 75.13 24.87 21.87

Table 3. Comparisons complementing Table 1. Comparison of EditAR to various feed-forward methods (bottom) and inversion-based
approaches (top) on the PIE-Bench dataset. Our results attain superior results in preserving the details of the input as well as following the
new edits, narrowing the gap with advanced inversion-based methods. The feed-forward baseline results show various types of failures,
such as decline in image quality, unfaithful background preservation, and not following the editing instructions. While InstructPix2Pix
achieves a high edited CLIP score, it struggles to reconstruct unedited regions accurately, as indicated by its lower whole CLIP score
and background scores. MagicBrush shows improved background preservation but at the expense of editing quality. InstructDiffusion
and MGIE shows improved reconstruction and editing quality, yet our method demonstrates stronger overall performance. Seed-X-Edit
struggles with reconstructing unedited regions and produces images with unrealistic contrast.

tion. However, compared to our approach, these methods
struggle to preserve the background. To enhance non-rigid
editing, MasaCtrl modifies self-attention in diffusion mod-
els into mutual self-attention, enabling effective blending of
local content and textures from input images during gener-
ation. While specialized for non-rigid edits, it falls short
when applied to a variety of editing tasks. As indicated by
the CLIP similarity, our method achieves better overall re-
sponsiveness to edits.

For improved reconstruction quality, optimization-based
inversion methods like Null-text Inversion and PnP Inver-
sion are proposed to invert the conditioning image into
a latent embedding, achieving near-perfect reconstruction.
Note the numbers in Table 3 for both methods are produced
with Prompt-to-Prompt. Although these methods generate
higher-quality visuals, they require additional computation
and time to optimize the latent embeddings. As shown in
Figures 7, 8, 9, 10, 11, these methods are still limited by
the lack of a unified, content-preserving model that consis-
tently performs well across diverse tasks, thus limiting their
scope.

B. Additional Image Translation Comparison

In Table 2, Figure 4 and Section 4.3 in the main text, we
have shown our image translation results as well as com-
parisons to various baselines. Here we provide more de-
tails show more visual comparisons: depth-to-image in Fig-
ure 12, edge-to-image in Figure 13, segmentation-to-image
in Figure 14. ControlNet results are produced with Con-

trolNet v1.1. For UniControlNet, Unicontrol and Control-
Net++, we use their official released checkpoints. For each
method, we produce 5,000 examples of resolution 512×512
to measure the corresponding metrics. Results show that,
though learning a more challenging task, our model still
synthesizes diverse images with good visual quality.

C. Distillation

In Section 4.4 of the main text, we qualitatively show that
adding the distillation loss improves the overall text-to-
image alignment, e.g., better localizing the target editing
object, on the task of image editing. For image transla-
tion, our results show that the FID scores are improved
from 16.35 to 15.97 for depth-to-image, 14.43 to 13.91 for
edge-to-image, 16.52 to 16.13 for segmentation-to-image.
These results further emphasize the importance of enforc-
ing a stronger feature space similarity between the autore-
gressive model and foundation models, leading to models
with stronger performance across tasks.

D. Implementation Details

Evaluation and Metrics. For image editing, the PIE-Bench
dataset is used for evaluation. Specifically, PIE-Bench con-
tains 700 images featuring ten distinct editing types: (0)
random editing, (1) change object, (2) add object, (3) delete
object, (4) change object content, (5) change object pose,
(6) change object color, (7) change object material, (8)
change background, and (9) change image style. Within
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each scene, images are evenly distributed among four cat-
egories: animal, human, indoor environment, and outdoor
environment. Our method as well as all other feed-forward
methods uses the source image and editing instructions to
predict the target edit. The inversion-based approaches use
the source image, the source prompt, and the target image
prompt. Structure Distance (×103) leverages self-similarity
of DINO-ViT features and computes cosine similarity be-
tween image features as structure distance. PSNR, LPIPS
(×103), MSE (×104), and SSIM (×102) are reported to
compare the background preservation using the manual-
annotated masks. The CLIP score (×102) evaluates text-
image similarity between the edited images and correspond-
ing target editing text prompts. Both the whole image and
regions in the editing mask (black out everything outside the
mask) are calculated, and referred to as Whole Image Clip
and Edit Region Clip, respectively. All metrics are com-
puted at the resolution of 512× 512.

For the evaluation of image translation, we follow Con-
trolNet++ and use the corresponding validation splits for
COCOStuff and MultiGen-20M, which contain 5, 000 ex-
amples per task. Regarding metrics, we follow the common
practice in the field: mIOU (×102) is used for semantic seg-
mentation conditions, RMSE for depth map conditions, and
SSIM (×102) for canny edge conditions. FID scores are
computed with 5, 000 images at the resolution of 512×512.

Training and Inference. To overcome varying imbal-
ances between tasks, datasets must be mixed thoughtfully.
We mix datasets by sampling 15% for each image trans-
lation task, 25% for PIPE dataset, and 30% for SEED-
Data-Edit-Unsplash. The training hyperparameters mostly
follow LlamaGen. All images are resized to a resolution
of 512 × 512 for both training and inference. The VQ-
Autoencoder has a downsampling ratio of 16, so that each
image is represented by 1024 tokens. Its dictionary size is
16384 and embedding dimensionality is 8. The text encoder
utilizes Flan-T5-XL, producing a sequence of 120 embed-
dings. We use the pre-trained text-to-image autoregressive
model LlamaGen GPT-XL, which has 36 layers and an em-
bedding dimension of 1280. The model is optimized using
AdamW with a constant learning rate of 10−4, β1 = 0.9,
β2 = 0.95, and weight decay of 0.05. The model is trained
with a batch size of 64 for 40, 000 iterations on 8 A100
GPUs. We use λdistill = 0.5 and η = 3.0 for inference.

E. Discussion
EditAR is a versatile autoregressive model that unifies mul-
tiple conditional image generation tasks within a single
framework. Using only text prompts, the model seamlessly
adapts to various image inputs and tasks. Our comprehen-
sive evaluation demonstrates EditAR’s exceptional perfor-
mance in both image editing and diverse image translation
tasks. This work represents a significant milestone as the

first demonstration that a single autoregressive model using
next-token prediction can effectively handle various con-
ditional generation tasks on large-scale benchmarks. By
successfully tackling multiple conditional image generation
challenges, EditAR opens new possibilities for unified con-
ditional generation approaches, building upon recent ad-
vances in text-to-image autoregressive modeling.

Limitations. EditAR builds upon autoregressive text-
to-image models, allowing it to naturally benefit from ad-
vances in base model quality. Besides, the current imple-
mentation is restricted to single-image conditional inputs,
though the framework could theoretically handle multiple
conditions. Additionally, the model struggles with non-
rigid or 3D editing tasks due to the insufficient training data.
Addressing these challenges through expanded datasets and
architectural enhancements represents an important direc-
tion for future research.
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Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the color of the tea cup to white.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the room to a garden.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Make the cat wear a hat.
Figure 7. Comparisons complementing Figure 3. Comparison of EditAR to various feed-forward methods and inversion-based approaches
on the PIE-Bench dataset. Our results attain superior results in preserving the details of the input as well as following the given edits.
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Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Make the young girl a black and white sketch.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Make the camera a wooden toy.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Create digital art style.
Figure 8. Comparisons complementing Figure 3. Comparison of EditAR to various feed-forward methods and inversion-based approaches
on the PIE-Bench dataset. Our results attain superior results in preserving the details of the input as well as following the given edits.
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Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Remove the husky dog.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the color of the rose from red to blue.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the kitten’s color to yellow.
Figure 9. Comparisons complementing Figure 3. Comparison of EditAR to various feed-forward methods and inversion-based approaches
on the PIE-Bench dataset. Our results attain superior results in preserving the details of the input as well as following the given edits.
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Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the season from autumn to spring.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Remove the small mushroom from the pine branch.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Remove the bee flying over the flowering tree branch.
Figure 10. Comparisons complementing Figure 3. Comparison of EditAR to various feed-forward methods and inversion-based approaches
on the PIE-Bench dataset. Our results attain superior results in preserving the details of the input as well as following the given edits.
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Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the state of the sky to sunset.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the environment from a field to a forest.
Input Ours InstructPix2Pix MagicBrush InstructDiffusion MGIE

SEED-X Prompt-to-Prompt Null-Text Inversion PnP Inversion Pix2Pix-Zero MasaCtrl

Change the plant to a flower.
Figure 11. Comparisons complementing Figure 3. Comparison of EditAR to various feed-forward methods and inversion-based approaches
on the PIE-Bench dataset. Our results attain superior results in preserving the details of the input as well as following the given edits.
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Ground-truth Ours UniControl ControlNet ControlNet++Condition UniControlNet

Figure 12. Comparisons complementing Figure 4. Visual comparisons to baseline methods on various depth-to-image translation. Our
method, EditAR, produces photo-realistic results, preserves input details, and offers substantial sample diversity.
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Ground-truth Ours UniControl ControlNet ControlNet++Condition UniControlNet

Figure 13. Comparisons complementing Figure 4. Visual comparisons to baseline methods on various edge-to-image translation. Our
method, EditAR, produces photo-realistic results, preserves input details, and offers substantial sample diversity.
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Ground-truth Ours UniControl ControlNet ControlNet++Condition UniControlNet

Figure 14. Comparisons complementing Figure 4. Visual comparisons to baseline methods on various segmentation-to-image translation.
Our method, EditAR, produces photo-realistic results, preserves input details, and offers substantial sample diversity.
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