

Learning from Synthetic Animals

Jiteng Mu*, Weichao Qiu*, Gregory Hager, Alan Yuille

Johns Hopkins University

Problem Statement

Animal CAD Models

Unlabeled Real Images

Jiteng Mu*, Weichao Qiu*, Gregory Hager, Alan Yuille

Learning from Synthetic Animals

Motivation

Human 2D Pose Estimation

Newell et al., 2016

He et al., 2017

Animal 2D Pose Estimation

??

Jiteng Mu*, Weichao Qiu*, Gregory Hager, Alan Yuille

Learning from Synthetic Animals

Motivation

Why not annotate large scale animal datasets?

1. Impractical to annotate all animal species

2. Hard to annotate various ground truth

Our Vision: Using **CAD models** to address the problem

Learning from Synthetic Animals

Our solution

Synthetic Animal Dataset

Domain Randomization

Semi-Supervised Learning

Learning from Synthetic Animals

Consistency-Constrained Semi-Supervised Learning

Consistency check Invariance consistency T_{β}

Equivariance consistency T_{lpha}

Temporal consistency T_Δ

Learning from Synthetic Animals

Results

Learning from Synthetic Animals

Experiments 1 ---- 2D Pose Estimation

Neural Network

- Stacked Hourglass [Newell et al., 2016]

Synthetic Animal Dataset

- Horses and tigers
- 8,000/2,000 training/validation

TigDog Dataset

- Horses: 8,380/1,772 train/test
- Tigers: 6,523/1,765 train/test

Horses

Tigers

Learning from Synthetic Animals

Experiments 1 --- Easy to extend to other categories

Sheep

Dogs

Learning from Synthetic Animals

Experiments 2 ---- Generalization on VisDA-2019 dataset

Horses

Learning from Synthetic Animals

Jiteng Mu*, Weichao Qiu*, Gregory Hager, Alan Yuille

Tigers

Experiments 3 --- Multi-task Learning

Learning from Synthetic Animals

Learning from Synthetic Animals

- 1. Unsupervised domain adaptation for animal 2D pose estimation
- 2. Consistency-constrained semi-supervised learning
- 3. Better generalization on VisDA-2019 dataset
- 4. Synthetic Animal Dataset with 10+ animals and rich ground-truth

Code and Data are available at

https://github.com/JitengMu/Learning-from-Synthetic-Animals

Learning from Synthetic Animals